用户名*
邮箱*
密码*
确认密码*
验证码* 点击图片更换验证码
找回密码
忘记密码了?输入你的注册邮箱,并点击重置,稍后,你将会收到一封密码重置邮件。
rt
来源于:维基百科
数据挖掘(Data mining),又译为资料探勘、数据挖掘、数据采矿。它是数据库知识发现(英文:Knowledge-Discovery in Databases,缩写:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
数学建模就是使用数学方法解决实际应用问题。
数学建模是应用学科的核心内容,任何一门科学都是在数学的框架下表达自己解决问题的思想和方法,并和别的专业或者方向分享这些思想和方法。任何一门学科,只有当其使用数学时,才是好的精确的学科。
分析实际问题中的各种因素,使用变量表示;
分析这些变量之间的关系,哪些是相互依存的,哪些是独立的,他们具有什么样的关系;
根据实际问题选用合适的数学框架(典型的有优化问题,配置问题等等),并具体的应用问题在这个数学框架下表出;
选用合适的算法求解数学框架下表出的问题;
使用计算结果解释实际问题,并且分析结果的可靠性
昵称*
E-Mail*
回复内容*
回复 ( 1 )
来源于:维基百科
数据挖掘(Data mining),又译为资料探勘、数据挖掘、数据采矿。它是数据库知识发现(英文:Knowledge-Discovery in Databases,缩写:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
数学建模就是使用数学方法解决实际应用问题。
数学建模是应用学科的核心内容,任何一门科学都是在数学的框架下表达自己解决问题的思想和方法,并和别的专业或者方向分享这些思想和方法。任何一门学科,只有当其使用数学时,才是好的精确的学科。
分析实际问题中的各种因素,使用变量表示;
分析这些变量之间的关系,哪些是相互依存的,哪些是独立的,他们具有什么样的关系;
根据实际问题选用合适的数学框架(典型的有优化问题,配置问题等等),并具体的应用问题在这个数学框架下表出;
选用合适的算法求解数学框架下表出的问题;
使用计算结果解释实际问题,并且分析结果的可靠性