发起人:黄小西 初入职场

哈哈

回复 ( 10 )

  1. 张溪梦 Simon
    理由
    举报 取消

    先上结论:创业公司要重视数据,但每个阶段关注的重点不同。产品非常早期时,数据驱动是个伪命题。

    那么,创业者应该从什么时候开始关注数据呢?

    | 从什么时候开始关注数据?

    「每个阶段的重点不同,增长期是数据驱动的关键时期。」

    虽然说数据很重要,那么,创业者应该从什么时候开始关注数据呢?

    一般来说,创业者会经历 4-5 个产品、企业的生命周期。

    1. 第一个阶段,冷启动。

    这个时候公司特别早期,用大数据驱动是一个伪命题——因为客户数量有限,样本性不足。他们需要更多地去了解潜在客户的需求,去“求”客户来用这个产品。

    2. 第二个阶段,增长前期。

    冷启动接近完成。有经验的创业者,会开始布局和增长有关系的一些核心指标,比如说日/月活跃,留存度。

    这些指标的目的不是为了衡量产品当前当下的表现,而是为了未来做增长时有可比较的基准。并且,这些指标能够告诉我们,什么时候我们应该去做增长。

    产品本身没有黏度的话,去烧钱做增长,它不会真正地增长起来,因为流失速度超过增长速度。以前很多烧钱的企业能成功,是因为竞争没有那么激烈,用户没有那么多种选择。但是今天如果你的产品很差,留存不高,口碑也不好,烧再多的钱也不能获得真正核心的自然增长。

    3. 第三个阶段,是增长期。

    这个阶段就能看出来好的创业公司和普通创业公司的巨大差别——效率。

    无论 PR 还是做活动,都需要人力和时间成本。如何在增长中,找到效率最高的渠道?这个我觉得,是创业公司之间 PK 的核心竞争力。

    如果不做数据驱动,靠直觉,一次两次可以,但没有人能进赌场连赢一万次。所以,直觉需要和数据进行结合,这样企业能迅速优化各个渠道,来提高单位时间的转化效率。通过转化效率的提高和叠加,变成企业的核心竞争力。

    一个不用数据驱动的公司,和一个用数据驱动的公司,假设运营策略一样,资本储备类似,客户也一样,后者一定会胜出。

    4. 第四个阶段,是变现期。

    业务变现,要求有很高的用户基数。一般互联网产品中高活跃、体验好的用户,会转化为付费用户。类似一个漏斗,不断地去筛,这里面就是要拼运营的效率了。

    比如说,电商用户的转化漏斗一般是:访问——注册——搜索——浏览——加入购物车——支付,或者到未来的退货。

    这是非常非常长的一个漏斗,真正要做好数据化运营,要对漏斗的每个环节持续地进行追踪。为什么呢?因为不能衡量,就很难去做增长。

    一个好的企业,特别是以后要做营收的企业,必须要关注各个部门各个环节的转化效率。这种转化效率,要达成的手段,可以通过市场营销的方法、产品改进的方法、甚至客户运营的方法。

    而其中每个环节小幅提高,加在一起就是一个倍数的提高。这种倍增,如果没有做过数据化运营的人,很难体会到会有多大。

    比如,以前我们在 LinkedIn 做数据驱动转化时,要推送某篇 EDM ,同样发给 10 万人,拍脑袋决策的转化是 0.01%,但是经由数据驱动部门做个简单的数据模型,同样推送后,转化率提升到了 0.3%,高出 30 倍。如果每周都那么做的话,这种转化效果还是非常可观的。

    | 什麽时候确定数据框架?

    「LinkedIn 早期就有清晰的数据框架,只有一万用户,就做数据驱动,反复问一个用数据能证明的问题。」

    LinkedIn 是 2002 年底成立的,成立早期就已经把用户数据和变现的框架讲得很清楚了。无论是在产品设计还是业务运营,数据都是很重要的环节。哈弗曼(LinkedIn 创始人 & CEO)收集大量的用户信息,想了三种变现方式:

    1. 通过用户的基本信息来变现,比如说公司发布职位;
    2. 用户数量增长到一定程度的时候,有 B2B 企业投广告;
    3. 当有大量人的信息以后,公司的猎头会用这个平台来找候选人。

    变现的方式他想得很清楚,但并没有在第一天就去做,他核心关注的是用户体验和使用度,是整体的增长,增长产生大量的数据,他从数据里学习,未来才做变现。

    LinkedIn 在只有 1 万用户的时候,就开始用数据驱动业务。这段时间去观测两个渠道,一个是电子邮件,一个是搜索。从数据里发现,从搜索引擎的渠道里进来的用户,比电子邮件邀请进来的人数量差不多,但在产品平台上的活跃度要高 3 倍。

    这是之前没有想到过的,于是做了一个决定:如果要获取同样数量的用户,他们更愿意投入资源在使用频次更高、更愿意把时间花在这里的人,所以,放弃低活跃的用户,专注活跃的用户。

    LinkedIn 每年反复要去问的一个问题是:如果只有一件事全公司要做的话,是什么?得用数字来证明的?

    一星期内加到 5 个联系人的用户,他们的留存、使用频度、停留时间是那些没有加到 5 个联系人的用户的三倍到五倍,这是他们找到的驱动增长的魔法数字。

    但是当时这样的人非常非常少,于是他们在产品各个入口都增加社交关系。

    LinkedIn 最早的时候,并不知道为什么增加社交关系会产生那么大的留存度,我们分析了起码有两三百个各种不同的指标,最后没有任何一个指标能告诉我们,就是因为这个原因。

    可是加权以后的结果是,这些用户在上面花了很多时间,间接就成为变现的可能。产品经理就把非常复杂的问题简化,让所有的东西都关注这一个点:让更多的用户在第一周里加到 5 个联系人。于是,增长飞快。

    | 总结

    我在 LinkedIn 做过很多年数据分析。数据分析在国内一些特别大的企业才能得到重视,但是在美国,数据已经成为驱动众多企业增长的重要引擎。

    为什么国内很多企业,表面上很重视数据分析,最后却流于形式?

    许多公司处于疯狂增长时期,大家一拍脑子做的决定,可能已经产生很多价值了,这种情况下他们很难意识到数据决策能产生的巨大价值。

    同时,他们没有太多基础方法论的认知,技术和业务彼此不了解,进一步加剧了数据使用的缓慢,不能看到价值实现。最后就变成了凭感觉来做决策,而不是真正通过数据运营来做决策。

    但是我们看看美国,以 LinkedIn 为例, 在过去 6 年间从一个 7000 万左右年营收的企业,一下子增长至 30 亿美元营业额的企业,这种增长速度在企业服务领域里面是惊人的。

    6 年多以前,我第一次在 LinkedIn 的公司例会上,听到德鲁克的一句话:一个事情,如果不能衡量它,就不能增长它。这句话沉淀出了 LinkedIn 的企业价值观:增长带动数据分析,数据带动变现,变现进一步促进增长。

    最后,打个广告,如果您希望用数据驱动增长,可以到我们官网注册免费试用 GrowingIO 官网 硅谷新一代数据分析产品

  2. 明说
    理由
    举报 取消

    在“Absolutely”和”Absolutely NOT”之间总有一个“It depends”,很多创业公司尤其是在创业之初,最重要的让他们区别于其他对手,或者最快打开市场,或者最快创立品牌,或者最大限度利用资金的未必是数据,例如:土家掉渣饼……

    但是,同时也有很多创业公司,其创业之本就是技术,就是数据,就是在数据(大数据)中挖掘价值,从而区别于其他对手,从而最快打开市场,从而最快创立品牌,从而最大限度利用资金……,例如:Splunk,Hortonworks……

    短期来说,Whatever makes sense to survive…,长期来说,有数据上,没有数据,创造数据也要上……

  3. 白起
    理由
    举报 取消

    当然要重视数据,但不要被数据牵着鼻子走。

  4. 数据哥
    理由
    举报 取消

    太重要重要重要了……

    例如,你需要用数据去吸引用户、用数据去说服投资者

    你需要对数据进行研究,提供更好的用户体验;

    数据还能帮助你找到商机

  5. 邱晨
    理由
    举报 取消

    要。

    不能依据那少得可怜的数据做决策参考,样本太少,不适宜做分析,更不能依据“分析结果”做决策参考。

    需要做的是收集数据,寻找关键数据节点。

  6. 肖遥
    理由
    举报 取消

    创业公司也分阶段,

    项目策划阶段,这时候可能核心任务是流程跑通,产品上线,但是要预留好上线时期 需要关注的数据。

    比如 第一批种子用户导入后的长期关注他们的活跃数据

    在产品初期的运营中,就需要开始关注新增 活跃 留存之类的数据

    所以啊,创业公司当然是要重视数据的,或者换一个说法比较明确,创业公司要重视如何获取数据。

  7. 匿名用户
    理由
    举报 取消

    先说结论,需要重视数据

    目前就职于一个数据相关的公司,公司已经成立7年了,前5年一直默默无闻,不紧不慢,招了很多人做数据,最近招到技术还不错的人来使用这些数据,做一些模型和算法,产品做的有声有色,数据也被带动,卖的还不错。但是数据还是有很多错误的地方,以致于做算法模型时都不知道是算法问题还是数据问题。

    如果让我一开始做,我想我会注重数据的质量的。

    你拿个错误的数据,用再好的模型,都是白扯。

  8. 小丑
    理由
    举报 取消

    每一个项目都需要有数据的支撑,这样就能避免许多没有必要的错误,这是一个大数据的时代,通过大数据分析,得到我们想要的结果,创新需要大数据,做什么都需要大数据,但是在中国大多数认为这是在浪费资源,浪费精力人力物力,但是却不知失去了大数据的分析能力就是失去了市场。

  9. 用户头像
    理由
    举报 取消

    当然要,程序什么的重构容易,数据难啊

  10. MissMore
    理由
    举报 取消

    数据是基础,数据是依据,数据是参考。

我来回答

Captcha 点击图片更换验证码