发起人:徐亚渤 初入职场

We don't need to talk about this now

回复 ( 1 )

  1. 张戎
    理由
    举报 取消

    写过一篇关于 KL 散度的理论+运用的文章:KL 散度(从动力系统到推荐系统)

    在信息论和动力系统里面,Kullback-Leibler 散度(简称 KL 散度,KL divergence)是两个概率分布 P 和 Q 的一个非对称的度量公式。这个概念是由 Solomon Kullback 和 Richard Leibler 在 1951 年引入的。从概率分布 Q 到概率分布 P 的 KL 散度用 D_{KL}(P||Q) 来表示。尽管从直觉上看 KL 散度是一个度量或者是一个距离,但是它却不满足度量或者距离的定义。例如,从 Q 到 P 的 KL 散度就不一定等于从 P 到 Q 的 KL 散度。本文即将介绍如何将动力系统的概念运用到实际推荐系统的工作中,从而达到更佳的推荐效果。

    详细请见:KL 散度(从动力系统到推荐系统)

我来回答

Captcha 点击图片更换验证码